
第二次作业250328
一. 简答题(共1题,100分)
1. (简答题) 设函数\begin{aligned} Z=Z(x,y) \end{aligned}由方程\begin{aligned} x^2y-{\rm e}^{xz}=\sin y \end{aligned}所确定,求\begin{aligned} \frac{\partial z}{\partial x},\frac{\partial z}{\partial y} \end{aligned}.
解:\begin{aligned} F(x,y,z)=x^2-{\rm e}^{xz}-\sin y \end{aligned},\begin{aligned} F_x'(x,y,z)=2xy-z{\rm e}^{xz} \end{aligned}
\begin{aligned} F_y'(x,y,z)=x^2-\cos y \end{aligned},\begin{aligned} F_z'(x,y,z)=-x{\rm e}^{xz} \end{aligned}
\therefore\begin{aligned} \frac{\partial z}{\partial x}=-\frac{F_x'(x,y,z)}{F_z'(x,y,z)}=\frac{2xy-z{\rm e}^{xz}}{x{\rm e}^{xz}} \end{aligned}
\begin{aligned} \frac{\partial z}{\partial y}=-\frac{F_y'(x,y,z)}{F_z'(x,y,z)}=\frac{x^2-\cos y}{x{\rm e}^{xz}} \end{aligned}
- 感谢你赐予我前进的力量
赞赏者名单
因为你们的支持让我意识到写文章的价值🙏
本文是原创文章,采用 CC BY-NC-ND 4.0 协议,完整转载请注明来自 云享阁资源库
评论
匿名评论
隐私政策
你无需删除空行,直接评论以获取最佳展示效果